Copied to
clipboard

G = C4210D14order 448 = 26·7

10th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4210D14, C14.962+ 1+4, C4⋊C444D14, (C4×D28)⋊8C2, (C4×C28)⋊6C22, D14⋊Q84C2, C4.D286C2, C42⋊D71C2, C422D73C2, D14⋊C440C22, D14.5D44C2, C22⋊D28.1C2, C42⋊C211D7, (C2×C14).71C24, C4⋊Dic756C22, C22⋊C4.95D14, D14.15(C4○D4), Dic74D443C2, C2.8(D48D14), (C2×C28).146C23, Dic7⋊C432C22, C22⋊Dic144C2, (C4×Dic7)⋊50C22, (C2×Dic14)⋊5C22, (C2×D28).23C22, (C22×C4).192D14, C72(C22.45C24), C23.D7.4C22, C22.18(C4○D28), (C23×D7).37C22, (C22×D7).21C23, C23.159(C22×D7), C22.100(C23×D7), C23.23D1427C2, (C22×C28).435C22, (C22×C14).141C23, (C2×Dic7).198C23, (C22×Dic7).88C22, C4⋊C4⋊D74C2, C2.10(D7×C4○D4), (C2×C4×D7)⋊45C22, (C2×D14⋊C4)⋊40C2, (C7×C4⋊C4)⋊54C22, (D7×C22⋊C4)⋊26C2, C2.30(C2×C4○D28), C14.28(C2×C4○D4), (C2×C7⋊D4).9C22, (C7×C42⋊C2)⋊13C2, (C2×C14).41(C4○D4), (C2×C4).274(C22×D7), (C7×C22⋊C4).138C22, SmallGroup(448,980)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4210D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4210D14
C7C2×C14 — C4210D14
C1C22C42⋊C2

Generators and relations for C4210D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 1300 in 248 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C42⋊C2, C42⋊C2, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C4.4D4, C422C2, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C22.45C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C22×Dic7, C2×C7⋊D4, C22×C28, C23×D7, C42⋊D7, C4×D28, C4.D28, C422D7, C22⋊Dic14, D7×C22⋊C4, Dic74D4, C22⋊D28, D14.5D4, D14⋊Q8, C4⋊C4⋊D7, C2×D14⋊C4, C23.23D14, C7×C42⋊C2, C4210D14
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, 2+ 1+4, C22×D7, C22.45C24, C4○D28, C23×D7, C2×C4○D28, D7×C4○D4, D48D14, C4210D14

Smallest permutation representation of C4210D14
On 112 points
Generators in S112
(1 72 19 69)(2 80 20 63)(3 74 21 57)(4 82 15 65)(5 76 16 59)(6 84 17 67)(7 78 18 61)(8 75 22 58)(9 83 23 66)(10 77 24 60)(11 71 25 68)(12 79 26 62)(13 73 27 70)(14 81 28 64)(29 112 43 96)(30 106 44 90)(31 100 45 98)(32 108 46 92)(33 102 47 86)(34 110 48 94)(35 104 49 88)(36 103 55 87)(37 111 56 95)(38 105 50 89)(39 99 51 97)(40 107 52 91)(41 101 53 85)(42 109 54 93)
(1 42 12 33)(2 36 13 34)(3 37 14 35)(4 38 8 29)(5 39 9 30)(6 40 10 31)(7 41 11 32)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)(57 95 64 88)(58 96 65 89)(59 97 66 90)(60 98 67 91)(61 85 68 92)(62 86 69 93)(63 87 70 94)(71 108 78 101)(72 109 79 102)(73 110 80 103)(74 111 81 104)(75 112 82 105)(76 99 83 106)(77 100 84 107)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 11)(2 10)(3 9)(4 8)(5 14)(6 13)(7 12)(15 22)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)(29 50)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 45)(37 44)(38 43)(39 49)(40 48)(41 47)(42 46)(57 59)(60 70)(61 69)(62 68)(63 67)(64 66)(71 79)(72 78)(73 77)(74 76)(80 84)(81 83)(85 109)(86 108)(87 107)(88 106)(89 105)(90 104)(91 103)(92 102)(93 101)(94 100)(95 99)(96 112)(97 111)(98 110)

G:=sub<Sym(112)| (1,72,19,69)(2,80,20,63)(3,74,21,57)(4,82,15,65)(5,76,16,59)(6,84,17,67)(7,78,18,61)(8,75,22,58)(9,83,23,66)(10,77,24,60)(11,71,25,68)(12,79,26,62)(13,73,27,70)(14,81,28,64)(29,112,43,96)(30,106,44,90)(31,100,45,98)(32,108,46,92)(33,102,47,86)(34,110,48,94)(35,104,49,88)(36,103,55,87)(37,111,56,95)(38,105,50,89)(39,99,51,97)(40,107,52,91)(41,101,53,85)(42,109,54,93), (1,42,12,33)(2,36,13,34)(3,37,14,35)(4,38,8,29)(5,39,9,30)(6,40,10,31)(7,41,11,32)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)(57,95,64,88)(58,96,65,89)(59,97,66,90)(60,98,67,91)(61,85,68,92)(62,86,69,93)(63,87,70,94)(71,108,78,101)(72,109,79,102)(73,110,80,103)(74,111,81,104)(75,112,82,105)(76,99,83,106)(77,100,84,107), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(29,50)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)(71,79)(72,78)(73,77)(74,76)(80,84)(81,83)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,112)(97,111)(98,110)>;

G:=Group( (1,72,19,69)(2,80,20,63)(3,74,21,57)(4,82,15,65)(5,76,16,59)(6,84,17,67)(7,78,18,61)(8,75,22,58)(9,83,23,66)(10,77,24,60)(11,71,25,68)(12,79,26,62)(13,73,27,70)(14,81,28,64)(29,112,43,96)(30,106,44,90)(31,100,45,98)(32,108,46,92)(33,102,47,86)(34,110,48,94)(35,104,49,88)(36,103,55,87)(37,111,56,95)(38,105,50,89)(39,99,51,97)(40,107,52,91)(41,101,53,85)(42,109,54,93), (1,42,12,33)(2,36,13,34)(3,37,14,35)(4,38,8,29)(5,39,9,30)(6,40,10,31)(7,41,11,32)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)(57,95,64,88)(58,96,65,89)(59,97,66,90)(60,98,67,91)(61,85,68,92)(62,86,69,93)(63,87,70,94)(71,108,78,101)(72,109,79,102)(73,110,80,103)(74,111,81,104)(75,112,82,105)(76,99,83,106)(77,100,84,107), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(29,50)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,59)(60,70)(61,69)(62,68)(63,67)(64,66)(71,79)(72,78)(73,77)(74,76)(80,84)(81,83)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,112)(97,111)(98,110) );

G=PermutationGroup([[(1,72,19,69),(2,80,20,63),(3,74,21,57),(4,82,15,65),(5,76,16,59),(6,84,17,67),(7,78,18,61),(8,75,22,58),(9,83,23,66),(10,77,24,60),(11,71,25,68),(12,79,26,62),(13,73,27,70),(14,81,28,64),(29,112,43,96),(30,106,44,90),(31,100,45,98),(32,108,46,92),(33,102,47,86),(34,110,48,94),(35,104,49,88),(36,103,55,87),(37,111,56,95),(38,105,50,89),(39,99,51,97),(40,107,52,91),(41,101,53,85),(42,109,54,93)], [(1,42,12,33),(2,36,13,34),(3,37,14,35),(4,38,8,29),(5,39,9,30),(6,40,10,31),(7,41,11,32),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49),(57,95,64,88),(58,96,65,89),(59,97,66,90),(60,98,67,91),(61,85,68,92),(62,86,69,93),(63,87,70,94),(71,108,78,101),(72,109,79,102),(73,110,80,103),(74,111,81,104),(75,112,82,105),(76,99,83,106),(77,100,84,107)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,11),(2,10),(3,9),(4,8),(5,14),(6,13),(7,12),(15,22),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23),(29,50),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,45),(37,44),(38,43),(39,49),(40,48),(41,47),(42,46),(57,59),(60,70),(61,69),(62,68),(63,67),(64,66),(71,79),(72,78),(73,77),(74,76),(80,84),(81,83),(85,109),(86,108),(87,107),(88,106),(89,105),(90,104),(91,103),(92,102),(93,101),(94,100),(95,99),(96,112),(97,111),(98,110)]])

85 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4F4G4H4I4J4K4L4M4N4O7A7B7C14A···14I14J···14O28A···28L28M···28AP
order12222222224···444444444477714···1414···1428···2828···28
size111122141428282···24441414282828282222···24···42···24···4

85 irreducible representations

dim11111111111111122222222444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4C4○D4D14D14D14D14C4○D282+ 1+4D7×C4○D4D48D14
kernelC4210D14C42⋊D7C4×D28C4.D28C422D7C22⋊Dic14D7×C22⋊C4Dic74D4C22⋊D28D14.5D4D14⋊Q8C4⋊C4⋊D7C2×D14⋊C4C23.23D14C7×C42⋊C2C42⋊C2D14C2×C14C42C22⋊C4C4⋊C4C22×C4C22C14C2C2
# reps111111111211111344666324166

Matrix representation of C4210D14 in GL4(𝔽29) generated by

12000
01200
00127
00028
,
18200
271100
00170
00017
,
112500
42500
0010
00128
,
251100
25400
00280
00281
G:=sub<GL(4,GF(29))| [12,0,0,0,0,12,0,0,0,0,1,0,0,0,27,28],[18,27,0,0,2,11,0,0,0,0,17,0,0,0,0,17],[11,4,0,0,25,25,0,0,0,0,1,1,0,0,0,28],[25,25,0,0,11,4,0,0,0,0,28,28,0,0,0,1] >;

C4210D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{10}D_{14}
% in TeX

G:=Group("C4^2:10D14");
// GroupNames label

G:=SmallGroup(448,980);
// by ID

G=gap.SmallGroup(448,980);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,100,675,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽